Introduction

Defects in the malleolus region are commonly encountered in clinical practice and can be attributed to various causes such as trauma, pressure injuries, and diabetes. Superficial defects can be treated with conservative methods such as dressings, but full-thickness defects are not easy to treat. This is because even small-sized skin defects are usually accompanied by widely undermined pockets of subcutaneous tissue defects, which makes the process of epithelization difficult. Friction caused by joint motion, leakage of joint fluid, chronic serous discharge due to infections, and concomitant infections such as bursitis or osteomyelitis are other common obstacles to secondary intention healing in this region [1].

In many cases of foot and ankle defects, reconstruction is difficult as the areas often have poor circulation due to diabetes, peripheral vascular disease, etc., and ligament or bone exposure is common, and there is insufficient tissue that can be used around the defect. Microsurgical reconstruction is a good option for foot and ankle recon-
The peroneal artery perforators were mapped using hand-held percutaneous transluminal angioplasty (PTA) was performed. The distally based sural flap procedure has been commonly used since it was first reported by Masquelet et al. in 1992 [3], and a meta-analysis of all 50 articles that report the use of the unmodified distally based sural flap was performed by Follmar et al. in 2007 [4]. Many modifications of the procedure have been reported aiming to reduce complications and increase the success rate, such as the delay technique [5], supramalleolar flap [6], retromalleolar flap [7], and peroneal artery perforator flap [8].

In lateral malleolar defects which are challenging to manage, we have applied one of these modifications: the adipofascial turnover flap based on a peroneal artery perforator. Although most of our cases were patients in medically compromised patients with comorbidities, all flap transfers were successful without major complications. This study aims to describe our experience of this technique and discuss the advantages and limitations of the strategy.

Methods

Patients

We recruited patients who had a defect in the lateral malleolar area reconstructed with a distally based sural adipofascial turnover flap based on a peroneal artery perforator between December of 2011 and February of 2016. The operations were performed by a single surgeon (HJY). All data were acquired from retrospective chart review following approval by the Institutional Review Board (IRB No. DFE21ORIO108, 2021-09-027). This study conformed to the World Medical Association Declaration of Helsinki (June 1964) and its subsequent amendments. Informed consent was exempted due to the retrospective design of the study. Data were collected on patient age, sex, etiology, comorbidities, anesthesia type, combined surgery, presence of osteomyelitis, bacterial profiles, defect size, flap size, flap elevation time, follow-up period, and complications.

Surgical technique

For patients without palpable peroneal artery on physical examination or with possible vascular injury due to previous trauma, computed tomography (CT) angiography for the lower extremities was performed and, if indicated prior to surgery, percutaneous transluminal angioplasty (PTA) was performed. The peroneal artery perforators were mapped using hand-held Doppler ultrasonography the day before the operation. Surgery was performed under spinal anesthesia if possible. However, if spinal anesthesia was difficult or in cases where a combined operation on other areas was required, general anesthesia was used. In cases where the patient had high anesthesia-related risk due to poor general condition, local anesthesia was used. For general or spinal anesthesia, a tourniquet was applied, and for local anesthesia, 1:100,000 epinephrine mixed with 1% lidocaine was infiltrated into the surgical site. After thorough debridement of the necrotic and scar tissues and unhealthy bone tissue, the size of the soft-tissue defect was measured.

The posterior border of the fibula and the lateral border of the Achilles tendon were marked, respectively. Since the peroneal perforator exists within this range, the flap width was designed to not exceed this range. The perforator was rechecked and marked using a hand-held Doppler, and the pivot point was determined (Fig. 1A). The width of the flap was designed to be identical to the width of the defect, and the length of the flap was determined by using a piece of gauze to simulate flap turnover and insetting for satisfactory coverage of the defect; the flap was designed to be a little longer considering the thickness of the folded part of the flap (Fig. 1B and C).

A longitudinal skin incision was made in the middle of the designed flap, and skin flap elevation was performed on both sides of the incision. At this point, to prevent flap necrosis of the donor site, about 2–3 mm of fat tissue was included in the skin flaps, and to reduce thermal injury, these were dissected using a sharp device such as a scalpel or scissors rather than an electrocautery device (Fig. 1D). The adipofascial flap was elevated to the previously designed pivot point by dissecting below the deep fascia (Fig. 1E). The flap was then turned over to cover the defect without tension. The flap was subsequently inset into the defect and fixed with absorbable sutures. For cases with subcutaneous tunneling under the skin margins of the wound, the sutures were passed into the undermined pocket, brought out through the skin, and tied over sponge bolsters to reduce dead space. The flap was then covered with a split-thickness skin graft. The skin graft was fixed with 5-0 nylon, and a wet-to-dry dressing was applied without pressure to prevent compression of the flap. A negative drain was placed in the donor site and primary closure was performed (Fig. 1F). A short leg splint was applied for immobilization, and elevation of the leg was required for 2 weeks postoperatively to reduce edema and prevent venous congestion.
Results

Data are listed in Table 1. All nine patients were male. The patients’ ages ranged from 48 to 80 years old (mean, 66.4 years old). In four patients, the defects were caused by pressure sores, while in two other patients, they were postoperative wounds following mass excision done at other clinics. In two other cases, the defects were caused by diabetic foot ulcers. In one patient, it was caused by trauma. Seven out of the nine patients had one or more comorbidities, and four out of nine were current smokers. Three out of nine patients were diagnosed with chronic osteomyelitis from a three-phase bone scan. Wound swab cultures were performed before the operation. In seven out of nine patients, no microorganisms were identified from the wound. Vancomycin-susceptible Enterococcus and Providencia stuartii were identified in one patient. Mycobacterium tuberculosis was identified in another. CT angiography of the lower extremities was performed in six pa-
Table 1. Patient demographics and clinical information

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex/age (yr)</th>
<th>Etiology</th>
<th>Comorbidities</th>
<th>Anesthesia type</th>
<th>Combined surgery</th>
<th>Presence of osteomyelitis</th>
<th>Bacterial profile</th>
<th>Wound size (cm2)</th>
<th>Defect size (cm2)</th>
<th>Flap size (cm2)</th>
<th>Flap elevation time (min)</th>
<th>Follow-up period (mo)</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M/71</td>
<td>Pressure sore</td>
<td>HTN, DM, CVA</td>
<td>General</td>
<td></td>
<td>Not examined</td>
<td>No microorganism</td>
<td>6.81</td>
<td>3.81</td>
<td>4.44</td>
<td>53.0</td>
<td>52.8</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>M/72</td>
<td>Pressure sore</td>
<td>Dementia</td>
<td>General</td>
<td></td>
<td>Not examined</td>
<td>No microorganism</td>
<td>4.1</td>
<td>4.1</td>
<td>2.5</td>
<td>77.0</td>
<td>77.0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>M/73</td>
<td>Pressure sore</td>
<td>HTN</td>
<td>General</td>
<td></td>
<td>Not examined</td>
<td>No microorganism</td>
<td>4.1</td>
<td>4.1</td>
<td>2.5</td>
<td>77.0</td>
<td>77.0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>M/80</td>
<td>Pressure sore</td>
<td>HTN, DM, CVA</td>
<td>General</td>
<td></td>
<td>Not examined</td>
<td>VSE, Providencia stuartii</td>
<td>4.1</td>
<td>4.1</td>
<td>2.5</td>
<td>77.0</td>
<td>77.0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>M/66</td>
<td>Diabetic foot ulcer</td>
<td>HTN, DM, CVA, ESRD</td>
<td>General</td>
<td></td>
<td>+</td>
<td>No microorganism</td>
<td>1.5</td>
<td>1.5</td>
<td>9.0</td>
<td>33.25</td>
<td>NR</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>M/58</td>
<td>Diabetic foot ulcer</td>
<td>HTN, DM, CVA, ESRD</td>
<td>General</td>
<td></td>
<td>+</td>
<td>No microorganism</td>
<td>1.5</td>
<td>1.5</td>
<td>9.0</td>
<td>33.25</td>
<td>NR</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>M/48</td>
<td>Postoperative defect</td>
<td>Spinal</td>
<td>General</td>
<td></td>
<td>−</td>
<td>No microorganism</td>
<td>9.0</td>
<td>9.0</td>
<td>2.5</td>
<td>53.0</td>
<td>53.0</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>M/73</td>
<td>Postoperative defect</td>
<td>IHD</td>
<td>General</td>
<td></td>
<td>−</td>
<td>Mycobacterium tuberculosis</td>
<td>4.1</td>
<td>4.1</td>
<td>2.5</td>
<td>77.0</td>
<td>77.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>M/57</td>
<td>Trauma</td>
<td>General</td>
<td>Combined fasciocutaneous flap (tibial side)</td>
<td></td>
<td>−</td>
<td>No microorganism</td>
<td>4.1</td>
<td>4.1</td>
<td>2.5</td>
<td>77.0</td>
<td>77.0</td>
<td>2</td>
</tr>
</tbody>
</table>

Case 1 (patient no. 1)

A 71-year-old male patient visited the hospital because of a pressure sore in the left lateral malleolus with purulent discharge that did not heal for several months. The patient had a history of hypertension, diabetes mellitus, and history of a previous cerebrovascular accident. After radical debridement of necrotic tissues and unhealthy bone tissue, the defect was measured to be 4.5×3.5 cm. An adipofascial turnover flap was elevated and inset in the defect. As tunneling was observed around the skin defect, flap-anchoring sutures were passed into the pocket, defect flap anchoring sutures were passed into the pocket, and the flap was designed to be 9.5×3.5 cm. The follow-up period ranged from 1 to 90 months (mean±standard deviation, 30.7±31.6 months). Complications occurred in two out of nine patients. One patient had partial loss of the skin graft, and an additional split-thickness skin graft was performed 2 weeks after surgery. The other patient developed cellulitis 3 months after surgery and improved after administration of oral antibiotics. Other than those problems, there were no complications such as total or partial flap loss, venous congestion, déhiscence, or necrosis. During the postoperative follow-up period, no patient had difficulty in shoe fitting or required revision due to flap bulk.

Case 2 (patient no. 4)

A 71-year-old male patient visited the hospital because of a pressure sore in the left lateral malleolus with purulent discharge that did not heal for several months. The patient had a history of hypertension, diabetes mellitus, and history of a previous cerebrovascular accident. After radical debridement of necrotic tissues and unhealthy bone tissue, the defect was measured to be 4.5×3.5 cm. An adipofascial turnover flap was elevated and inset in the defect. As tunneling was observed around the skin defect, flap-anchoring sutures were passed into the pocket, defect flap anchoring sutures were passed into the pocket, and the flap was designed to be 9.5×3.5 cm. The follow-up period ranged from 1 to 90 months (mean±standard deviation, 30.7±31.6 months). Complications occurred in two out of nine patients. One patient had partial loss of the skin graft, and an additional split-thickness skin graft was performed 2 weeks after surgery. The other patient developed cellulitis 3 months after surgery and improved after administration of oral antibiotics. Other than those problems, there were no complications such as total or partial flap loss, venous congestion, déhiscence, or necrosis. During the postoperative follow-up period, no patient had difficulty in shoe fitting or required revision due to flap bulk.

Patient demographics and clinical information

- **Patient no.**
- **Sex/age (yr):** M/71, M/72, M/73, M/80, M/66, M/58, M/48, M/73, M/57
- **Etiology:** Pressure sore, Pressure sore, Pressure sore, Pressure sore, Diabetic foot ulcer, Diabetic foot ulcer, Postoperative defect, Postoperative defect, Trauma
- **Comorbidities:** HTN, DM, CVA, Dementia, HTN, General, HTN, IHD, LC, ESRD, HTN, DM, CVA, CVA, cerebrovascular accident, HTN, liver cirrhosis
- **Anesthesia type:** General, General, General, General, General, Local, General, Local, General
- **Combined surgery:**
 - Pressure sore: Pressure sore, Pressure sore
 - Diabetic foot ulcer: Diabetic foot ulcer, Diabetic foot ulcer
 - Postoperative defect: Postoperative defect, Postoperative defect
 - Trauma: Trauma
- **Presence of osteomyelitis:** Not examined, Not examined
- **Bacterial profile:** No microorganism, No microorganism
- **Wound size (cm2):** 6.81, 4.1, 4.1, 4.1, 1.5, 1.5, 9.0, 4.1, 4.1
- **Defect size (cm2):** 3.81, 4.1, 4.1, 4.1, 1.5, 1.5, 9.0, 4.1, 4.1
- **Flap size (cm2):** 4.44, 2.5, 2.5, 2.5, 9.0, 9.0, 53.0, 15.75, 44
- **Flap elevation time (min):** 53.0, 77.0, 77.0, 77.0, 33.25, 60.0, 53.0, 77.0, 77.0
- **Follow-up period (mo):** 52.8, 55.0, 61.0, 53.0, 53.0, 61.0, 90.0, 55.0, 55.0
- **Complications:** Skin graft loss

M, male; HTN, hypertension; DM, diabetes mellitus; CVA, cerebrovascular accident; IHD, ischemic heart disease; PAOD, peripheral artery occlusive disease; ESRD, end-stage renal disease; LC, liver cirrhosis; VSE, vancomycin-susceptible Enterococcus; NR, not recorded.
structured using an adipofascial turnover flap based on a peroneal artery perforator, and at 55 months after the operation, stable coverage was still maintained without recurrence of wound or ulceration at the surgical site. The recipient site also showed good contours without excessive bulkiness and did not present any difficulties in shoe fitting, and the scar at the donor site was tolerable (Fig. 3).

Discussion

Several locoregional flaps based on the distally based sural flap [1,9] have been introduced to reconstruct malleolar area defects, including the lateral retromalleolar flap [7], lateral supramalleolar flap [10], lateral calcaneal flap, and peroneal artery perforator flap [11,12]. Although distally based sural flaps have been commonly used for several decades, their complication rates have been reported to be relatively high. According to a meta-analysis, the success rate of unmodified distally based sural flap was reported to be 82% [4]. According to a systematic review of 61 papers, flap complications were recorded to occur in 26.4%, with venous insufficiency and increasing age being the independent risk factors [2]. Studies of 70 flaps in a multimorbid patient group showed a considerable necrosis rate of 36% and flap complication rate of 59% [13]. Many authors reported that the complication rate was significantly higher in old patients and those with systemic disease [13-16]. They therefore reported that refinements such as delay techniques or venous supercharging should be considered in high-risk groups [4,13,14].

In our cases, the mean age was 66.4 years old, and six out of nine patients (66.7%) were over 60 years old. Seven out of nine patients (77.8%) had one or more comorbidities, and four patients (44.4%) had two or more multiple comorbidities. However, there was not a single case of flap necrosis, and there was only one case of revision due to skin graft necrosis.

It is classically described that the peroneal perforators provide arterial supply to the distally based sural flap, and the most distal perforator is located 4 to 7 cm from the lateral malleolus. Therefore, most authors reported that the pivot point must be a minimum of approximately 5 cm proximal to the...
lateral malleolus [4,17-19]. However, some authors reported that peroneal perforators are at about 1 to 3 cm above the tip of the lateral malleolus [7,20], and using this perforator as a pedicle can lower the pivot point further and render the length of the flap shorter, thus reducing the risk of necrosis caused by a longer flap.

The authors confirmed the position of the peroneal perforator prior to surgery using a hand-held Doppler in all cases, and in one case with a possibility of vascular injury due to previous trauma, CT angiography was performed to confirm that the perforator was intact. In the authors’ study, the most distal perforator among the perforators found using preoperative Doppler was determined as the pivot point, and the location ranged from 3.5 to 4.0 cm from the tip of the lateral malleolus.

Comorbidities such as old age, smoking, diabetes, and peripheral artery occlusive disease are not contraindications to surgery, but patients with peroneal artery occlusion or direct injury are absolutely contraindicated from this surgical technique [4]. Therefore, patients with previous trauma history, or with diabetes or suspected arterial occlusion may need preoperative evaluation such as Doppler or CT angiography.

Among the various methods for lower extremity reconstruction, the fasciocutaneous flap has a skin island and is therefore preferred for stable resurfacing of the defect, but the skin island must be precisely inset into the defect. Secondary debulking procedures are often necessary for patients to fit into shoes as fasciocutaneous flaps are usually large in volume [21]. The propeller flap is a local island fasciocutaneous flap based on a single dissected perforator to allow maximal arc of rotation. It can be rotated to any angle up to 180°, facilitating design and insetting [22]. However, although microanastomosis is not required, meticulous microdissection of the perforator is needed. In addition, since distally based propeller flaps are commonly used for distal lower leg reconstruction, when a skin graft is performed on a large-sized donor defect, the graft scar on the donor site located in the calf becomes more prominent, resulting in an aesthetically unpleasing result.

Adipofascial flaps for foot and ankle reconstruction have been reported by several authors [1,9,23]. Schmidt et al. [21] reported that the adipofascial flap is technically easier and faster to perform and better than the fasciocutaneous flap in aesthetic outcomes. Complication rates at the donor site were
5.5% for the adipofascial group and 25% for the fasciocutaneous group, and the incidence of complications was significantly lower in the adipofascial flap patient group. However, it is less ideal for reconstruction of a weight-bearing surface [21,24]. In 28 cases of foot and ankle reconstruction by Mojallal et al. [9], no ulcers occurred during the follow-up period. Kim et al.’s study of 14 diabetic infected lateral malleolar bursitis cases reconstructed with this adipofascial flap also presented no recurrent ulcers during follow-up [23].

According to a study of 233 burn patients, the composition of the recipient bed (whether dermis, granulation tissue, fat, or fascia) has no significant influence on the success rate of split-thickness skin grafting [25]. Nevertheless, there have been concerns about immediate skin grafting on adipofascial flaps; Li et al. [1] performed a three-stage protocol of debridement, followed by adipofascial flap coverage, and a final skin graft 1 week later. We performed those steps simultaneously because skin grafts take suitably on well-vascularized flaps, as demonstrated by Mojallal et al. [9] and Kim et al. [23].

For reconstruction of lateral malleolar defects, there are several advantages in using the adipofascial turnover flap based on the peroneal artery perforator. First, it is safe and reliable because it is a pedicled flap based on the peroneal artery perforator. Second, there is no need for microsurgical techniques, the surgical method is simple, and the operation time is short. Third, since it does not include a skin island, there are less restrictions on design and inseting, and it is less likely to leave a large and disfiguring scar in the calf area because the donor is primarily closed, not grafted. It is thin and pliable, and shoe fitting is possible without a debulking procedure. Fourth, since the dissection plane is relatively avascular, surgery can be performed without a tourniquet, which allows the procedure to be performed under local anesthesia when necessary in patients with medical comorbidities and high anesthesia risks.

Overall, we found that the peroneal artery perforator-based adipofascial flap can provide stable and reliable coverage on the lateral malleolus, involving a relatively short operation time and simple operative technique. It could be a promising option for reconstructing not only lateral malleolus but also other foot and ankle defects, especially for patients with comorbidities who are typically not indicated for more complex procedures.

Conflict of interest

No potential conflict of interest relevant to this article was reported.

ORCID iDs

Hyeonjung Yeo https://orcid.org/0000-0001-5705-7380
Sanghun Lee https://orcid.org/0000-0002-3509-1577
Hyochun Park https://orcid.org/0000-0001-6019-8002
Hannara Park https://orcid.org/0000-0003-4158-0489
Hyodong Kim https://orcid.org/0000-0003-4731-4325
Daegu Son https://orcid.org/0000-0002-4653-1048

References