Modified Lisfranc Amputation to Reduce Hematoma Rate in Diabetic Foot Ulcer

Sooseong Leem, M. Seung Suk Choi, Jung Woo Chang, Jang Hyun Lee
Department of Plastic and Reconstructive Surgery, College of Medicine, Hanyang University, Seoul, Korea

Abstract

Background: Diabetic foot ulcers (DFU) may result in limb amputations. Lisfranc level amputations follow the tarsometatarsal joint line, which is indented at the second toe ray due to the shortness of the intermediate cuneiform bone. For this reason a dead space inevitably forms at this site underneath the skin. We describe a modified technique for amputations at Lisfranc level obliterating this dead space, which in turn may result in less hematoma.

Methods: Four patients with DFU were operated using a modified Lisfranc amputation. The amputations were performed along the tarsometatarsal joints except for the second toe ray. After enucleation of the first, third, fourth and fifth metatarsals with the scalpel, the second metatarsal was amputated with an oscillating saw at the level of the distal ends of the medial and lateral cuneiforms, leaving the proximal portion of the metatarsal bone connected to the tarsus, thus obliterating the dead space between the cuneiforms. The skin was closed primarily.

Results: Mean follow-up was 16.2 months. All patients were male and their mean age was 69 years. All stumps healed primarily without developing a hematoma. One of the patients is able to walk on his salvaged foot without orthotic device. The other patients are in the status of rehabilitation.

Conclusion: The described modification can efficiently reduce the dead space resulting from classic amputation at the Lisfranc level. It remains to be shown in a larger study, if a reduced hematoma rate also results in a lower overall complication rate.

Keywords: Lisfranc amputation, Diabetic foot, Midfoot amputation, Diabetic foot ulcer, Modified Lisfranc amputation
were reviewed. From July 2015 to August 2016, four patients with diabetic foot ulcers were operated using a modified Lisfranc amputation by a single surgeon (Fig. 1).

The patient was placed supine on the operation table. A thigh tourniquet was applied with 300–350 mmHg pressure. The incision was designed to create long dorsal and plantar flaps. The amputations were performed along the tarsometatarsal joints except for the second toe ray. After enucleation of the first, third, fourth and fifth metatarsals with the scalpel, the second metatarsal was amputated with an oscillating saw at the level of the distal ends of the medial and lateral cuneiforms, leaving the proximal portion of the metatarsal bone connected to the tarsus, thus obliterating the dead space between the cuneiforms (Fig. 2). The skin flaps were trimmed in fish-mouth fashion to allow for primary closure. The skin was closed primarily after insertion of a drain. A splint was applied in all cases.

Seroma formation, hematoma, wound problem which needed revision, wound infection was recorded. Drain was removed 1–4 days after operation depending on amount of bleeding through the drain. Stitches were removed at approximately 21 days after operation depending on wound status.

Results

Total of 4 diabetic foot patients underwent Modified Lisfranc Amputation. Patient characteristics are shown in Table 1. All patients were male and their mean age was 69 years (range, 65–74 years). Mean follow-up was 16.2 months (range, 2–34 months). All stumps healed primarily without developing a hematoma or seroma (Fig. 3). One of the patients is able to walk on his salvaged foot without orthotic device (Fig. 4). The other patients are in the status of rehabilitation.

Discussion

The number of people with diabetes are continuously growing, and obviously the global prevalence of the diabetic foot
has risen [6]. The treatment of diabetic foot disease poses difficulties not only to surgeon but patients, not only because of disease if self but patients suffer co-morbidities. One of the most common and serious complication is diabetic foot ulcers, as wound healing is impaired in the diabetic patient, than patient whom do not have underlying pathophysiological defect [7,8]. And also, in case of seroma or hematoma, tissue repair is impaired and the healing process is delayed which could lead to wound infection [9].

Dead space following surgical closure can lead to hematoma and seroma, which give environment conducive to bacterial growth [10,11]. Inserting a drain will be helpful with these problems but leaving a drain for a long time is not possible because prolonged drainage increases the risk of infection [12]. Unlike another operation, in an operation like Lisfranc amputation, other method use to obliterate dead space, such as quilting suture, use of sealants and sclerotherapy or compression dressing, cannot be performed due to its anatomical structure and lack of circulation in diabetic foot. So obliterating the dead space anatomically, by leaving the proximal portion of the metatarsal bone, is a great idea and one of few options that can be made in Lisfranc amputation.

Wound problem that occurred in two cases were minor and healing with only dressing and no additional surgical procedure, such as revision, were required. None of the patients had hematoma. Postoperative X-ray showed that there is no dead space in which fluid accumulation can be made (Fig. 3).

The described modification can efficiently reduce the dead space resulting from classic amputation at the Lisfranc level, resulting low hematoma or seroma formation. A larger study should be done with comparison between classic Lisfranc amputation.

References

